..

Телекоммуникационные системы и управление

Отправить рукопись arrow_forward arrow_forward ..

An Optimized Telecommunication System Topology for Expenditure Minimization and Improved Spectral Utilization Efficiency

Abstract

Ogunwolu L, Ibidapo-Obe O, Adeyemi T

Capital expenditures (CAPEX) and operational expenditure (OPEX) has always been on the high side if transmission networks are not efficiently planned to minimize these costs. The arrays of antenna often sighted on mast/tower around often post a major risk to the industry as CAPEX increases with increased hardware and signal processing cost. This paper explores the use of point to multipoint (PMP) method of backhauling traffic for cognitive radio network as veritable alternative to existing transmission Point to Point (PTP) Topology in other to minimize the CAPEX and OPEX as well as improve spectra utilization efficiency. The work is focused on small cell deployment for more data penetration in a redundant setup to improve system availability. In the work, the Dijkstra Algorithm for Shortest route analysis was used to prove the advantage of Point to multi point approach in the optimal path planning in a transmission network taking cognizance of path costs as the capital expenditure, path loss, latency, throughput, frequency channel allocation. Furthermore, a spectrum utilization problem was defined, formulated and analyzed. Solution of this model was validated using a simulated setup on a section of Ikorodu (6°35”.37 N and 3°31”.53.99 E) transmission axis. Results obtained from the analysis show that our model of PMP method of transmitting/backhauling is more capable of improving the spectral efficiency of a wireless telecommunication network and outperforms the PTP topology on all network measures influencing capital and operational expenditures.

Отказ от ответственности: Этот реферат был переведен с помощью инструментов искусственного интеллекта и еще не прошел проверку или верификацию

Поделиться этой статьей

Индексировано в

arrow_upward arrow_upward