..

Журнал молекулярной гистологии и медицинской физиологии

Отправить рукопись arrow_forward arrow_forward ..

Utilizing Deep Learning for Comprehensive Lung and Lesion Quantification in Computerized Tomography Amidst Inconsistent Ground Truth

Abstract

Devashish Nath

Computed Tomography (CT) imaging plays a pivotal role in diagnosing, characterizing, predicting outcomes, and tracking disease progression in individuals affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Yet, for a consistent and dependable assessment of pulmonary irregularities, precise segmentation and quantification of both the complete lung and lung lesions (anomalies) in chest CT scans of COVID-19 patients are indispensable. Regrettably, the manual segmentation and quantification of extensive datasets can prove time-intensive and yield low levels of agreement both between different observers and within the same observer, even among experienced radiologists.

Отказ от ответственности: Этот реферат был переведен с помощью инструментов искусственного интеллекта и еще не прошел проверку или верификацию

Поделиться этой статьей

Индексировано в

arrow_upward arrow_upward