Martin Roy First, Thomas Whisenant, John J Friedewald, Peter Lewis, Stan Rose, Darren Lee, Deirdre Pierry, Sunil M Kurian, Terri Gelbart and Michael M Abecassis
Background: TruGraf is a blood test that measures gene expression signatures in kidney transplant recipients, providing information on adequacy of immunosuppression. Signatures derived from peripheral blood using DNA microarrays have been internally and externally validated in two populations of transplant recipients: (i) patients designated as TX (“Transplant eXcellence”) - stable serum creatinine and normal biopsy, indicative of immune quiescence, and (ii) patients designated as not-TX (renal dysfunction and/or histological abnormalities). The test is intended for use in subjects with stable renal function as an alternative to protocol biopsies.
Methodology: Simultaneous blood tests and transplant biopsies were performed in 169 patients. The molecular laboratory was blinded to renal function and biopsy results.
Results: Biopsy-confirmed clinical phenotype was TX (105 cases), not-TX (64). Renal function was stable in 125 subjects (105 TX, 20 not-TX). Positive predictive value of TruGraf for detecting TX was 86% and 105/125 (84%) had a normal biopsy result.
Significance of study: In subjects with stable renal function, TruGraf blood test result of TX corresponded to biopsy findings in 88% of cases. Results indicate that had the blood test been run in place of surveillance biopsies, 107/125 (86%) of patients with stable renal function may have avoided an invasive biopsy and 92/105 (88%) of these patients with biopsy-confirmed TX may have avoided a biopsy for a negative result.
Martin Roy First, Deirdre Pierry, Michael McNulty, Sunil M Kurian, Stan Rose, Thomas Whisenant, Terri Gelbart, April Venzon, Nadia Bayat, Peter Lewis, John J Friedewald, Michael M Abecassis and Darren Lee
Context: The TruGraf test is a blood-based assay that provides non-invasive, accurate assessment of adequacy of immunosuppression in kidney transplant recipients. TruGraf relies on gene-expression “signatures” that differentiate a state of Transplant eXcellence (TX, indicating adequately immunosuppressed) from not-TX.
Objective: To evaluate the performance of the TruGraf test.
Design: Analytical performance studies to characterize stability of RNA in blood during collection and shipment, analytical sensitivity (input RNA concentration), analytical specificity (interfering substances) and assay performance (clinical validity, and intra-assay, inter-assay, inter-laboratory reproducibility).
Results: Total RNA extracted from whole blood specimens collected in PAXgene Blood RNA tubes was stable up to 3 days at room temperature (stable RNA yield). Under routine ambient shipping conditions, storage and shipping temperatures did not affect results. However, specimen shipments exposed to temperatures >400°C or to ambient temperatures for >3 days were unacceptable for processing. Analytical sensitivity studies demonstrated tolerance to variation in RNA input (50 to 400 ng per 3’ IVT (in vitro transcript] labeling reaction). Specificity studies using genomic DNA spiked into 3 ’IVT reactions at 10-20% demonstrated negligible assay interference. The test was reproducible across operators, runs, reagent lots, and laboratories. External validation demonstrated that the TruGraf blood test accurately classified patients in 72% of 295 samples.
Conclusions: Analytical sensitivity, analytical specificity, robustness, quality control, and clinical validity of the TruGraf blood test were successfully verified, indicating its suitability for clinical use.