Ahlem Bendaoued, Mouna Messaoud, Omar Harzallah, Sophie Bistac, Rached Salhi
Ceramics Nano metric reinforced polymer composite is a significant material for catalysis, solar cells, production of hydrogen and energy applications, etc. In order to take benefit from the interesting mechanical properties and thermal stability of TiO2, this ceramic nanomaterial’s was synthesized by the Sol-Gel process in attempt to study the thermal stability, structure, and morphology of the resulting nanoparticles powders. The obtained results revealed that, the sphere is composed of 20-30 nm nanoparticles with excellent thermal stability of nano-TiO2, This work focused on the thermal characterization and the study of Nano composite xWt% TiO2/PP (x=0, 2.5, 5, 7.5 mol%). In this study, the obtained results revealed that the molar ratio of TiO2 influences the final thermal stability and degree of crystallinity of the composite. It was found that the use of TiO2 seems to be an effective and very promising way to increase the thermal properties of the resulting composite. The greatest degree of crystallinity (54.80%) and thermal degradation stability are obtained for composite reinforced by 7.5 Wt% TiO2.
Поделиться этой статьей